我的研究在于通过工程问题引起的统计,优化和机器学习的交集。我探索了理论和应用方面,并通过与域专家进行密切互动,在实际数据应用程序上进行了广泛的工作。在方法论开发方面,我的重点一直在设计算法上,这些算法不仅是计算机上有效的,而且在统计上是原则性的,提供了可靠的保证。i强调严格的数学分析,以建立理论属性并保证误差界限,类似复杂性和不确定性定量,并在可能的情况下努力最佳。我正在积极地将统计推断(例如假设检验和不确定性量化)与当代机器学习技术整合在一起。这种集成旨在为可信赖和可解释的机器学习奠定统计基础。在针对实际应用时,我的目标是使用数据来解决有影响力的社会问题。我的研究议程具有凝聚力,具有互连的主题,如下所述。
主要关键词