在本综述中,我们介绍了在计算机视觉领域应用的关键方法和图像分析方法。到目前为止,已经开发了许多不同的图像处理算法,包括: - 卷积神经网络(CNN) - 循环神经网络(RNN) - 深层生成的概率模型 - 基于编码器的神经网络,但是,卷积神经网络(CNN)在图像分类任务中尤其卓越了图像分类任务和对象攻击任务和对象攻击。他们的成功可以归因于他们考虑图像的二维结构的能力,这比多层感知器是一个优势。CNN由几层组成,每个层都负责处理图像并提取特定特征。这些网络采用三个关键的架构思想来对规模变化,旋转,翻译和空间扭曲进行鲁棒性。这些想法包括使用卷积层用于图像处理,降低空间维度的子采样以及用于数据归一化的激活层。因此,他们使用: - 局部接受场,提供神经元之间的局部二维连通性。- 共享的突触权重,可以在图像中任何地方检测特定特征并减少重量系数的总数。*通讯作者:landwatersun@mail.ru
主要关键词