在麻醉学和围手术医学中使用人工智能(AI)和机器学习(ML)正在迅速成为临床实践的中流。麻醉学是一种富含数据的医学专业,它整合了许多患者特殊信息。围手术医学已成熟,用于应用AI和ML,以促进数据合成以进行精确医学和预测性评估。新兴AI模型的示例包括那些有助于评估深度和调节麻醉性交付,事件和风险预测,超声指导,疼痛管理和手术室后勤的控制。AI和ML支持按大规模分析综合围手术数据,并可以评估模式以提供最佳的患者特异性护理。通过探索该技术的利益和局限性,我们为评估AI模型采用在各种麻醉学工作流中提供了考虑的基础。对麻醉学和围手术医学中AI和ML的分析探索了当前的景观,以更好地了解这些工具提供的优势,劣势,机遇和威胁(SWOT)。