Loading...
机构名称:
¥ 1.0

离散扩散或流模型可以比自回归模型更快,更可控制的序列产生。我们表明,单纯形上的线性流匹配不足以实现该目标,因为它遭受了训练目标和进一步的病理的差异。为了克服这一点,我们基于Dirichlet分布作为概率路径的混合物在单纯形上开发了Dirichlet流量匹配。在此框架中,我们在混合物的分数和流量的矢量字段之间得出了一个连接,允许分类器和无分类器指导。此外,我们提供了蒸馏的Dirichlet流量匹配,从而使一步序列产生具有最小的性能命中率,与自动回旋模型相比,O(L)的加速导致O(L)的加速。在复杂的DNA序列生成任务上,我们证明了与分布指标的所有基准相比,在实现生成序列的所需设计目标方面相比。最后,我们表明我们的指导方法改善了无条件的生成,并且可以生成满足设计目标的DNA。

dirichlet流匹配

dirichlet流匹配PDF文件第1页

dirichlet流匹配PDF文件第2页

dirichlet流匹配PDF文件第3页

dirichlet流匹配PDF文件第4页

dirichlet流匹配PDF文件第5页