摘要这篇全面的评论探讨了集合机器学习技术在定量结构 - 活性关系(QSAR)建模中的关键作用。它强调了准确的QSAR模型在简化候选化合物选择方面的重要性,并突出了合奏方法,包括Adaboost,梯度增强,随机森林,额外树木,XGBoost,LightGBM和Catboost的重要性,有效地解决了诸如过度拟合和噪声数据的挑战。该评论介绍了集合学习在QSAR内的分类和回归任务中的最新应用,从而在不同的数据集和目标属性中展示了这些技术的出色预测准确性。它还讨论了整体QSAR建模中的关键挑战和考虑因素,包括数据质量,模型选择,计算资源和过度拟合。审查概述了集成QSAR建模的未来方向,包括多模式数据的集成,解释性,处理不平衡的数据,自动化和个性化医学应用,同时强调了在此演变领域中对伦理和监管指南的需求。
主要关键词