摘要 - 受到脑启发的神经形态综合的价值在很大程度上取决于我们为它们编程相关任务的能力。目前,神经形态硬件通常依赖于从深度学习中适应的机器学习方法。但是,如果我们只能利用其能源效率和充分的计算能力,神经形态计算机的潜力远远超出了深度学习。神经形态编程实际上将与传统的编程不同,这需要我们对编程的看法进行范式转移。本文在神经形态计算的背景下介绍了编程的概念分析,挑战常规范式,并提出了一个框架,该框架与这些系统的物理复杂性更加紧密地保持一致。我们的分析围绕着五个特征,这些特征是Neumorphic编程的基础,并为当代编程方法和语言进行了比较提供了基础。通过研究过去的方法,我们贡献了一个框架,该框架提倡未充分利用的技术,并要求更丰富的抽象有效地启动新的硬件类。索引术语 - 数字计算,脑启发的comporting,硬件软件共同设计,编程技术
主要关键词