Loading...
机构名称:
¥ 1.0

摘要 - 软件错误在开发和维护过程中构成了巨大的挑战,从业者将近50%的时间用于处理错误。许多现有技术采用信息检索(IR),使用错误报告和源代码之间的文本和语义相关性来本地化报告的错误。但是,他们经常难以弥合需要深入上下文理解的错误报告和代码之间的关键差距,这超出了文本或语义相关性。在本文中,我们提出了一种用于错误本地化的新技术 - 大脑 - 通过评估与大语言模型(LLM)之间的相关性来解决上下文差距。然后,它利用LLM的反馈(又称智能相关性反馈)来重新调整查询并重新排除源文档,从而改善错误本地化。我们使用基准数据集–Bench4BL和三个完善指标评估大脑,并将其与文献的六个基线技术进行比较。我们的实验结果表明,MAP,MRR和HIT@K的大脑的表现分别超过了87.6%,89.5%和48.8%的利润率。此外,由于相应的错误报告质量较差,因此可以将≈52%的错误定位为无法通过基线技术定位的错误。通过解决上下文差距并引入智能相关性反馈,大脑不仅提高理论,而且可以改善基于IR的错误本地化。索引术语 - Bug本地化,查询重新印象,智能相关性反馈,信息检索,大语言模型,自然语言处理,软件工程

改进了基于IR的错误本地化,具有智能相关性反馈

改进了基于IR的错误本地化,具有智能相关性反馈PDF文件第1页

改进了基于IR的错误本地化,具有智能相关性反馈PDF文件第2页

改进了基于IR的错误本地化,具有智能相关性反馈PDF文件第3页

改进了基于IR的错误本地化,具有智能相关性反馈PDF文件第4页

改进了基于IR的错误本地化,具有智能相关性反馈PDF文件第5页

相关文件推荐