自动化特征转换的进化大语言模型
机构名称:
¥ 1.0

特征转换旨在重建原始功能的特征空间,以增强下游模型的性能。然而,功能和操作的组合呈指数增长构成了挑战,因此现有方法很难有效探索宽阔的空间。此外,它们的优化仅由在特定域中下游模型的准确性驱动,从而忽略了一般特征知识的获取。为了填补这一研究空白,我们提出了一个用于自动特征转换的进化LLM框架。This framework con- sists of two parts: 1) constructing a multi-population database through an RL data collector while utilizing evolutionary al- gorithm strategies for database maintenance, and 2) utiliz- ing the ability of Large Language Model (LLM) in sequence understanding, we employ few-shot prompts to guide LLM in generating superior samples based on feature transforma- tion sequence distinction.利用多人口数据库最初提供了广泛的搜索范围,以发现出色的人群。通过淘汰和进化,高质量的人群获得了更多的机会,从而进一步追求最佳个人。通过将LLM与进化算法整合在一起,我们在庞大的空间内实现了有效的外观,同时利用特征知识来推动优化,从而实现了更适应性的搜索范式。最后,我们从经验上证明了我们提出的方法的效率和普遍性。

自动化特征转换的进化大语言模型

自动化特征转换的进化大语言模型PDF文件第1页

自动化特征转换的进化大语言模型PDF文件第2页

自动化特征转换的进化大语言模型PDF文件第3页

自动化特征转换的进化大语言模型PDF文件第4页

自动化特征转换的进化大语言模型PDF文件第5页