基于监视数据的历史匹配将使不确定性减少,从而改善了工业规模的碳存储操作中的含水层管理。在传统的基于模型的数据同化中,对地理位置参数进行了修改,以在流量模拟结果和观察结果之间进行强制一致。在数据空间反转(DSI)中,历史匹配量的关注量,例如后压力和饱和磁场,以观察为条件,而无需构造后几何模型而直接推断出来。这是使用一组(1000)先前的仿真结果,数据参数化和贝叶斯设置后的后取样来有效完成的。在这项研究中,我们(在DSI中)开发和实施了基于深度学习的参数化,以在一组时间步长下代表时空压力和CO 2饱和场。新的参数化使用对抗性自动编码器(AAE)来减小尺寸和卷积长的短期内存(ConvlstM)网络来表示压力和饱和场的空间分布和时间演化。此参数化在DSI框架中使用多个数据同化(ESMDA)的集合更加顺畅,以实现后验预测。一个现实的3D系统,其特征是从一系列地质场景中提取的先前地质实现。引入了局部网格完善过程,以估计历史匹配公式中出现的误差协方差项。使用新的DSI框架为多个合成真实模型提供了各种数量的广泛历史匹配结果。在所有情况下,都达到了后压力和饱和场的大幅度不确定性。该框架还用于有效地为一系列误差协方差规范提供后验预测。使用传统的基于模型的方法,这种评估将非常昂贵。
主要关键词