帕金森氏病(PD)是一种毁灭性的运动,在全球流行率上加速了,但是缺乏精确的症状测量使得有效疗法的发展具有挑战性。统一的帕金森统一级评级量表(UPDRS)是评估运动症状严重程度的黄金标准,但其手动评分标准含糊不清,既模糊又主观,导致了粗糙和嘈杂的临床评估。机器学习方法有可能通过使PD症状评估现代化,以使其更具定量,客观和可扩展性。但是,缺乏用于PD运动考试的基准视频数据集阻碍了模型开发。在这里,我们介绍了郁金香数据集以弥合此差距。Tulip强调预先挑剔和全面性,包括25种UPDRS运动考试活动的多视频记录(6张摄像机),以及3位临床专家的评级,在帕金森氏症患者和健康对照组中。多视图记录实现了身体运动的3D重建,该重建更好地捕获疾病特征,而不是更多的调用2D方法。使用数据集,我们建立了一个基本线模型,用于预测3D姿势的UPDRS分数,以说明如何自动化现有诊断。展望未来,郁金香可以帮助开发超过UPDRS分数的新的精确诊断,从而深入了解PD及其潜在治疗方法。
主要关键词