Loading...
机构名称:
¥ 1.0

除了预测性能的问题之外,机器学习方法比通常的参数评分方法具有不可否认的优势,因为它们允许显着提高生产率。尤其是,机器学习算法使人可以在严格意义上减少建模阶段之前的数据管理和预处理阶段的时间(Milunovich,2019)1。当然,这并不意味着机器学习可以分配建筑和数据质量控制的工作,这仍然是必要的。为了充分理解这一点,让我们回到负责在大型银行风险部门内建立评分模型的统计学家的传统方法。他工作的第一步是将不同的治疗方法应用于培训数据。是处理缺失或外围值的处理,这需要实施检测,归纳和排除程序。其他治疗方法通常涉及离散解释变量的类别并分散连续变量。对于每个定性变量,将模式分组以减少类的数量并最大程度地提高变量的区分功能。所有连续的解释变量被离散化(Milunovich,2019)2。一方面是捕获潜在的非线性效应,另一方面是减少极值或未校正异常值的影响。根据这些相关性,专家根据简约的原理去除某些冗余变量。类别和离散阈值的数量是通过迭代算法确定的,该算法是为了在目标变量(默认值)和解释变量之间最大化Cramer的V类型关联或卡方统计量的测量。第二步是分析预测因子之间的相关性,以验证这些变量之间的相关性不太相关。第三步是选择分数模型的解释变量(Milunovich,2019)3。在给定的评分模型(例如逻辑回归)下,我们从所有重新加入的变量中选择最佳预测默认值。取决于可用的变量数量,可以手动进行此选择,也可以使用逐步进行自动方法。自动选择通常得到了业务专业知识和对模型的更精细分析(边际效果,优势比)。相反,使用分类树或基于树的算法(例如随机森林)使连续变量离散和分组类别过时。这些技术自主确定模式的最佳离散和分组(Stang等,2022)

革新房地产抵押评分

革新房地产抵押评分PDF文件第1页

革新房地产抵押评分PDF文件第2页

革新房地产抵押评分PDF文件第3页

革新房地产抵押评分PDF文件第4页

革新房地产抵押评分PDF文件第5页