Loading...
机构名称:
¥ 1.0

流化催化裂化 (FCC) 工艺在反应器中的催化剂的帮助下将柴油转化为可用产品(图 1)。催化剂附着在碳原子上,将长碳分子分解成有用产品。催化剂可以通过除去碳原子来重复使用。将催化剂与碳氢化合物产品分离。分离出的催化剂被移至称为再生器的容器中,在那里大量氧气被引入催化剂床层。在再生器中,氧气与碳发生反应,碳从催化剂上烧掉;产生热量,催化剂从烟气中分离出来。再生催化剂返回反应器。烟气通常为 25 至 50 psia (1.7 至 3.4 bara) 和 1250 至 1400°F (675 至 760°C),流速高达 1,700,000 lb/hr (775,000 kg/hr),通过第三级分离器去除额外的催化剂。然后烟气通过膨胀机。图 2 中可以看到最先进的单级膨胀机的横截面。图 3 显示了典型的两级膨胀机的示例。在膨胀机中,压力和温度降低,能量被提取并转化为机械功。即使烟气经过多个分离阶段处理,仍有相当数量的催化剂残留在烟气中并通过膨胀机。由于能源危机和电力成本,动力回收膨胀机装置的使用在 20 世纪 70 年代末和 80 年代初达到顶峰。由于在用的膨胀机的可靠性和可用性有限,从 20 世纪 80 年代末到今天,新膨胀机装置的数量一直在减少。技术进步(Carbonetto 和 Hoch,2002 年)提高了膨胀机的可靠性和可用性。如今能源成本的增加和对“绿色”能源的认识再次增加了人们对膨胀机的兴趣。

在线技术可降低限制膨胀机可靠性的风险

在线技术可降低限制膨胀机可靠性的风险PDF文件第1页

在线技术可降低限制膨胀机可靠性的风险PDF文件第2页

在线技术可降低限制膨胀机可靠性的风险PDF文件第3页

在线技术可降低限制膨胀机可靠性的风险PDF文件第4页

在线技术可降低限制膨胀机可靠性的风险PDF文件第5页

相关文件推荐

2009 年
¥23.0
2015 年
¥2.0
2014 年
¥51.0
2017 年
¥5.0
2018 年
¥4.0
2009 年
¥5.0
2020 年
¥24.0