它通过连接到宿主细胞膜上的受体分子上进入辅助T细胞。衣壳进入辅助T细胞,并释放含有病毒RNA的RNA通过逆转录酶将其用作模板,以产生这种互补的DNA偶发,使DNA偶发成型DNA,将其变成了DNA的DNA,将其变成了DNA的DNA,将其变成DNA DLA的DNA,将其变成DNA的DNA诱因。 From here it uses the host cell's enzymes to produce more viral components which are assembled to form new viruses These bud from the host cell and enter the blood, where they can infect other helper T cells and repeat the process At this stage, the individual is HIV positive and may experience flu-like symptoms This is known as the acute HIV syndrome stage After the initial infection period, during which HIV replication is rapid, the replication rate drops and the individual enters the无症状或慢性阶段
重组腺相关的病毒载体(AAVS)广泛用于研究和治疗中的基因递送。AAV9变体(例如AAV9-PHP.EB)经常用于基因递送到中枢神经系统(CNS),而AAV2变体对CNS有效转导的有效报告有限。为了克服AAV2的局限性,我们解决了基于AAV2血清型的新型脑靶向AAV矢量。迄今为止,我们已经证明了通过使用随机肽插入的AAV2库来获得的cereaav.o,可以通过全身注射有效地转导小鼠,而摩尔莫斯特脑有效地转导。此外,与CereAav.o相比,通过单个氨基酸取代,我们已经确定了一种新型的Cereaav.y突变体,其特异性和更高的转导效率。最近,Kawabata等人。已经证明,在AAV-BR1衣壳中,将单个氨基酸取代,将谷氨酰胺变为587(Q587N)的天冬酰胺,可能会增加BBB的渗透率,并重定向基因递送形成小囊囊内皮细胞对小鼠脑中神经元的囊泡内皮细胞。
噬菌体是一种细菌特异性病毒,外部蛋白衣壳包裹着噬菌体遗传物质,在某些情况下还有丝状尾巴。它们数量众多且变化多端,在影响微生物生态学方面发挥着重要作用。1 噬菌体与细菌共同进化了数亿年,选择性地结合并感染目标宿主,从而能够通过靶向裂解影响多菌株微生物种群的种群动态。此外,如果保存在非恶劣环境中,大多数噬菌体都具有长期高度稳定性,只有在紫外线下才会分解、物理磨损或暴露于某些化学物质时才会受损,只有少数例外。噬菌体基因组很小且相对简单,可以通过合成生物学方法进行工程改造,将小分子递送到入侵感染处,扩大或缩小噬菌体疗法的目标,或与生物材料结合用于伤口愈合技术。本综述旨在描述用于治疗感染(包括慢性和多重耐药性细菌群)的各种噬菌体疗法。特别关注噬菌体的递送方法以及所选策略的优缺点。
为控制流行病,我们急需一个能够快速生成多种候选疫苗的“通用”平台。以严重急性呼吸综合征冠状病毒 2 为模型,我们通过 CRISPR 工程改造 T4 噬菌体开发了这样一个平台。通过将各种病毒成分整合到噬菌体纳米颗粒结构的适当区室中,设计了一系列候选疫苗。这些包括基因组中可表达的刺突基因、作为表面装饰的刺突和包膜表位以及包装核心中的核衣壳蛋白。在动物模型中发现,装饰有刺突三聚体的噬菌体是最有效的候选疫苗。在没有任何佐剂的情况下,这种疫苗可刺激强大的免疫反应,包括 T 辅助细胞 1 (TH 1) 和 TH 2 免疫球蛋白 G 亚类,阻断病毒-受体相互作用,中和病毒感染,并提供针对病毒攻击的完全保护。这种新的纳米疫苗设计框架可能允许在未来快速部署针对任何新出现的病原体的有效无佐剂噬菌体疫苗。
目前的单细胞 RNA 测序 (RNA-seq) 方法仅提供有关基因表达动态的有限信息。我们在此介绍 RNA 时间戳,这是一种通过利用 RNA 编辑推断 RNA-seq 数据中单个 RNA 年龄的方法。为了引入时间戳,我们用一个报告基序标记 RNA,该基序由多个 MS2 结合位点组成,这些位点会募集与 MS2 衣壳蛋白融合的腺苷脱氨酶 ADAR2。ADAR2 与标记 RNA 结合会导致 A-to-I 编辑随时间累积,从而可以以小时级精度推断 RNA 的年龄。通过结合由同一启动子驱动的多个带时间戳的 RNA 的观察结果,我们可以确定启动子何时处于活跃状态。我们证明该系统可以推断多个过去转录事件的存在和时间。最后,我们应用该方法根据过去转录活动的时间来对单个细胞进行聚类。RNA 时间戳将允许将时间信息纳入 RNA-seq 工作流程。
jrseek:人工智能在病毒中遇到果冻卷折叠分类,杰森·E·桑切斯(Jason E. Sanchez)1,温汉·朱2(Wenhan Guo 2),丘奇安格李3,林李3 *,chuan xiao 2 * 1计算科学系,德克萨斯大学El Paso,El Paso,El Paso,El Paso,TX 2德克萨斯大学埃尔帕索分校的物理学,德克萨斯州埃尔帕索 *通信:电子邮件:lli5@utep.edu; cxiao@utep.edu关键字病毒;人工智能;机器学习;果冻卷;病毒结构摘要果冻卷(JR)折叠是病毒的衣壳和核蛋白质中发现的最常见的结构基序。其在许多不同病毒家族的动机中的普遍性开发了一种工具来预测其从序列中的存在。在当前的工作中,在六个不同的大语模型(LLM)嵌入训练的逻辑回归(LR)模型在将JR与非JR序列区分开时表现出超过95%的精度。用于训练和测试的数据集包括来自单个JR病毒,非JR病毒和非病毒免疫球蛋白样β-三明治(IGLBS)蛋白的序列,这些蛋白与JR结构上非常相似。鉴于病毒家族之间的低序列相似性和数据集的平衡性质,高精度尤其显着。同样,模型的准确性与LLM嵌入无关,这表明预测病毒JR折叠的峰精度更多地取决于数据质量和数量,而不是使用所使用的特定数学模型。鉴于许多病毒式衣壳和核素结构尚未解决,因此使用基于序列的LLMS是一种有前途的策略,可以轻松地应用于可用数据。Bert-U100嵌入的主成分分析表明,大多数IGLBS序列和JR和非JR序列的一个子集甚至在应用LR模型之前也可以区分,但是LR模型对于区分更歧义序列的子集是必要的。应用于双JR折叠时,BERT-U100模型能够为某些病毒家族分配JR图案,从而提供了该模型可推广性的证据。对于其他家庭而言,没有观察到这种概括性,激发了未来开发以双JR折叠告知的其他模型的需求。最后,BERT-U100模型还能够预测未分类病毒数据集中的序列是否产生JR倍数。给出了两个示例,JR预测由AlphaFold3证实。总的来说,这项工作表明JR折叠可以从其序列中预测。
病毒和病毒衍生颗粒具有将分子递送至细胞的内在能力,但难以轻易改变细胞类型选择性,这阻碍了它们用于治疗递送。本文,我们展示了通过包裹 CRISPR-Cas9 蛋白和向导 RNA 的膜衍生颗粒上展示的抗体片段识别细胞表面标志物,可以将基因组编辑工具递送至特定细胞。与依赖进化的衣壳向性递送病毒编码货物的传统载体(如腺相关病毒)相比,这些 Cas9 包装包膜递送载体 (Cas9-EDV) 利用可预测的抗体-抗原相互作用将基因组编辑机制选择性地暂时递送至目标细胞。抗体靶向的 Cas9-EDV 优先在混合群体中的同源靶细胞中而不是旁观者细胞中进行基因组编辑,无论是体外还是体内。 Cas9-EDV 使用多重靶向分子直接递送至人类 T 细胞,能够在人源化小鼠中生成基因组编辑的嵌合抗原受体 T 细胞,从而建立一种可编程的递送方式,具有广泛治疗用途的潜力。
重组腺相关病毒 (AAV) 载体是用于体内基因治疗的主要运载工具。抗 AAV 抗体 (AAV Abs) 可以与基于 AAV 的基因治疗 (GT) 的病毒衣壳成分相互作用。因此,已存在 AAV Abs 的患者(血清阳性患者)通常会被排除在 GT 试验之外,以防止治疗不太可能受益的患者或不良事件风险可能高于治疗益处的患者。相反,应避免不必要地排除未满足医疗需求的患者。相反,如果需要选择患者,则应进行风险-效益评估,权衡血清阳性的潜在风险与疾病严重程度和可用的治疗方案,以推动决策。患者选择的检测方法必须根据其预期用途进行验证,并遵循适当实验室的诊断检测国家法规/标准。在本综述中,我们总结了当前的患者选择过程,包括检测截止标准和相关的检测验证方法。我们进一步考虑了支持相应 GT 市场授权的体外诊断测试开发的监管要求。
免疫疗法是治疗癌症的有力工具,但细胞因子和免疫剂的多效性严重限制了临床转化和安全性。为了满足这一尚未满足的需求,我们设计并表征了一种系统靶向细胞因子基因传递系统,该系统通过使用来自肿瘤靶向噬菌体的外壳蛋白对人重组腺相关病毒 DNA 进行变形衣壳化。我们发现,变形噬菌体/AAV (TPA) 颗粒比目前噬菌体衍生的载体提供更好的转基因传递,因为它能在细胞外空间更好地扩散,并改善细胞内运输。我们使用 TPA 来靶向传递编码细胞因子的转基因,用于白细胞介素 12 (IL 12 ) 以及 IL 15 和肿瘤坏死因子 α (TNF α ) 的新亚型,以进行肿瘤免疫治疗。我们的结果证明,它可以在体内对实体瘤进行选择性和有效的基因传递和免疫治疗,而不会损害健康器官。我们的变形粒子系统通过两种常用病毒的跨物种互补,为安全有效的基因传递和癌症免疫治疗提供了一种有希望的方式。
在内外翻转碱基允许DNA纳米结构连续变形。一小部分瓷砖的复杂结构的抽象组装是生物学中的一个共同主题。例如,许多相同蛋白质的副本构成多面体形状的,病毒式衣壳和微管蛋白可以产生长的微管。这启发了基于瓷砖的DNA自组装纳米构造的发展,特别是对于具有高对称性的结构。在最终结构中,每种类型的图案都将采用相同的构象,无论是刚性还是具有定义的灵活性。对于没有对称性的结构,它们的组装仍然是一小部分瓷砖的挑战。为了应对这一挑战,算法的自组装是由计算科学探索的,但是尚不清楚如何将这种方法实施到一维(1D)结构。在这里,我们已经证明了构象平衡的不断变化可以使一维结构发展。如原子力显微镜成像所示,一种类型的DNA瓷砖已成功组装成DNA螺旋和同心圆,从结构的中心弯曲越来越少。这项工作指向基于瓷砖的DNA组件的新方向。