人们相信量子信息科学将引发下一次技术革命。量子网络是量子信息科学的关键要素,它使各种技术成为可能,例如安全通信、分布式量子传感、量子云计算以及下一代定位、导航和授时。量子网络的主要任务是实现网络中不同节点之间的量子通信。这包括涉及多方的量子态传输、端节点的量子信息处理以及远程节点之间的纠缠分布等主题。由于量子通信具有其独特的特性,而这些特性在经典通信网络中是没有的,因此为经典通信网络设计的协议和策略并不适用于量子通信。这就需要为量子网络量身定制的新概念、范例和方法。为此,本论文研究了量子网络的设计和操作,重点关注以下三个主题:状态传输、排队延迟和远程纠缠分布。第一部分开发了将量子态从发射器广播到 N 个不同接收器的协议。该协议表现出多方纠缠、广播经典比特(bcbits)和广播量子比特(bqubits)之间的资源权衡,其中后两者是本论文提出的新型资源。我们证明,要使用共享纠缠将 1 bqubit 发送到 N 个接收者,O(log N)bcbits 是必要和充分的。我们还表明,可以使用由单量子比特门和 CNOT 门组成的多(N)个基本门来实现协议。第二部分介绍了一种用于分析量子数据排队延迟的可处理模型,称为量子排队延迟(QQD)。该模型采用动态规划形式,并考虑了有限内存大小等实际方面。利用该模型,我们开发了一种基于认知内存的内存管理策略,并表明该策略可以使平均排队延迟随着内存大小呈指数级下降。第三部分提出了一种远程纠缠分布 (RED) 协议的设计,以最大化纠缠分布率 (EDR)。我们引入了以下概念
主要关键词