摘要 — 提出了一种新颖的框架,借助车对基础设施 (V2I) 通信网络提高自动驾驶汽车 (AV) 的驾驶安全性和燃油经济性。驾驶轨迹设计问题旨在最小化总燃料消耗,同时提高驾驶安全性(通过遵守交通规则和避开障碍物)。为了解决这个相关问题,提出了一种深度强化学习 (DRL) 方法来做出无碰撞决策。首先,提出了一种深度 Q 网络 (DQN) 辅助算法,通过从基站 (BS) 接收实时交通信息来确定 AV 的轨迹和速度。更具体地说,AV 充当代理,通过与环境交互来执行最佳动作,例如变道和变速。其次,为了克服 Q 学习模型对动作值的过高估计,提出了一种双深度 Q 网络 (DDQN) 算法,将最大 Q 值操作分解为动作选择和动作评估。此外,还提出了三种实用的驾驶策略作为基准。数值结果证明,所提出的轨迹设计算法能够提高 AV 的驾驶安全性和燃油经济性。我们证明了所提出的基于 DDQN 的算法优于基于 DQN 的算法。此外,还证明了从 DRL 算法衍生而来的基于燃油经济性 (FE) 的驾驶策略能够比基准节省超过 24% 的燃油。
主要关键词