我们提出了一种端到端深度学习模型,可以自动检测多通道脑电图 (EEG) 记录中的癫痫发作。我们的模型结合了卷积神经网络 (CNN) 和双向长短期记忆 (BLSTM) 网络,使用少量可训练参数有效地从 EEG 数据中挖掘信息。具体来说,CNN 会为原始多通道 EEG 数据的每个一秒窗口学习一个潜在编码。同时,BLSTM 会根据 CNN 编码学习癫痫发作表现的时间演变。这些架构的组合使我们的模型能够捕获指示癫痫发作活动的短时间尺度 EEG 特征以及癫痫发作表现中的长期相关性。与大多数先前的癫痫发作检测工作不同,我们通过留一患者交叉验证程序模拟住院监测环境,在所有患者中达到 0.91 的平均癫痫发作检测灵敏度。该策略验证了我们的模型可以推广到新患者。我们证明我们的 CNN-BLSTM 优于传统的特征提取方法和依赖于更大、更复杂的网络架构的最先进的深度学习方法。
主要关键词