摘要。紧凑型μ子螺线管 (CMS) 是欧洲核子研究中心大型强子对撞机 (LHC) 的通用探测器之一,它收集了大量的物理数据。在进行最终的物理分析之前,必须通过一系列自动(如物理对象重建、直方图准备)和手动(检查、比较和决策)步骤检查数据的质量(认证)。决策的最后一个手动步骤非常重要,容易出错,需要大量人力。决策(认证)目前正在计算机科学领域积极研究,以通过应用计算机科学的最新进展,特别是机器学习 (ML) 来实现自动化。归根结底,CMS 数据认证是一个二元分类任务,其中正在研究各种 ML 技术的适用性。就像任何其他 ML 任务一样,超参数调整是一个难题,没有黄金法则,每个用例都不同。本研究探索了元学习的适用性,它是一种超参数查找技术,其中算法从以前的训练实验中学习超参数。进化遗传算法已用于调整神经网络的超参数,如隐藏层数、每层神经元数、激活函数、辍学、训练批量大小和优化器。最初,遗传算法采用手动指定的超参数集,然后向接近最优解发展。应用遗传随机算子、交叉和变异来避免局部最优解。本研究表明,通过仔细播种初始解决方案,很可能会找到最优解。所提出的解决方案提高了用于 CERN CMS 数据认证的神经网络的 AUC 分数。类似的算法可以应用于其他机器学习模型的超参数优化。
主要关键词