Loading...
机构名称:
¥ 2.0

R B Joly、S O T Ogaji *、R Singh 和 S.D. Probert 克兰菲尔德大学工程学院,贝德福德郡 MK43 OAL,英国 ______________________________________________________________________ 摘要 英国皇家空军运营的 Tristar 飞机每年在运输和空中加油任务中飞行数千小时。每台劳斯莱斯 RB211-524B4 发动机都记录了大量发动机数据:这些数据用于辅助维护过程。在维修和大修后的试验台发动机地面运行期间也会生成数据。为了更有效地使用记录的发动机数据,本文评估了使用人工神经网络 (ANN) 的主动发动机诊断工具的可行性。介绍了发动机健康监测,并介绍了 ANN 背后的理论。提出了一种使用多个 ANN 的发动机诊断结构。顶层区分单组分故障 (SCF) 和双组分故障 (DCF)。中层类包括有故障的部件或部件对。底层根据使用相关参数的一组发动机数据,为每个发动机部件估计与发动机无关的参数值。本文提出的 DCF 结果说明了 ANN 作为诊断工具的潜力。但是,ANN 应用程序也有许多用户定义的功能:ANN 设计、使用的训练时期数;采用的训练函数、met

使用人工神经网络对燃气轮机进行诊断...

使用人工神经网络对燃气轮机进行诊断...PDF文件第1页

使用人工神经网络对燃气轮机进行诊断...PDF文件第2页

使用人工神经网络对燃气轮机进行诊断...PDF文件第3页

使用人工神经网络对燃气轮机进行诊断...PDF文件第4页

使用人工神经网络对燃气轮机进行诊断...PDF文件第5页

相关文件推荐