摘要:准确估计图像中物体的六自由度 (6-DoF) 姿势对于各种应用至关重要,例如机器人、自动驾驶、无人驾驶飞机系统 (UAS) 的自主、人工智能和基于视觉的导航。开发此类算法需要大量数据集;然而,生成这些数据集非常繁琐,因为它需要注释图像中每个感兴趣物体相对于相机的 6-DoF 相对姿势。因此,这项工作提出了一种新颖的方法,可以自动化数据采集和注释过程,从而将注释工作量最小化到录制持续时间。为了最大限度地提高生成的注释质量,我们采用基于优化的方法来确定相机的外部校准参数。我们的方法可以处理场景中的多个物体,自动为每个物体提供地面真实标记,并考虑不同物体之间的遮挡效应。此外,我们的方法不仅可用于生成 6-DoF 姿势估计和相应 3D 模型的数据,还可扩展到对象检测、实例分割或任何类型对象的体积估计的自动数据集生成。
主要关键词