摘要。如今,人类在各种高风险和低风险的决策任务中使用人工智能辅助。然而,人类对人工智能辅助的依赖往往不是最理想的——人们对人工智能的依赖程度要么过低,要么过高。我们对嘈杂的图像分类任务中的人机辅助决策进行了实证研究。我们分析了参与者对人工智能辅助的依赖程度以及人机辅助的准确性,并与人类或人工智能独立工作进行了比较。我们证明,参与者没有表现出自动化偏见,这是人类在人工智能辅助下表现出的一种广泛报道的行为。在这种特定的人工智能辅助决策实例中,人们能够在需要时正确地推翻人工智能的决策,并在综合表现上接近理论上限。我们认为,与之前的研究结果存在差异的原因在于:1)人们擅长对日常图像进行分类,并且对自己执行任务的能力有很好的了解;2)当被要求表明对自己的决策的信心时,人们会进行深思熟虑的元认知行为;3)人们能够通过结合每次试验后提供的反馈来建立良好的人工智能心理模型。这些发现应该可以为未来的实验设计提供参考。
主要关键词