Loading...
机构名称:
¥ 4.0

本论文使用与生理属性相关的数据,研究了飞行员在实验过程中的认知状态。尽管该挑战已经过期,但咨询公司 Booz Allen Hamilton 发起了一项挑战,鼓励数据科学家建立一个具有检测能力的模型,以防止航空事故和事件。本论文研究的首要问题是:能否通过生理测量预测飞行员的认知状态?先前的研究发现,认知状态检测可以提高航空安全性。在这项研究中,我们参考了人为因素分类和分析系统,以更广泛地看待研究结果。本论文研究的任务有两个方面:(1) 认知状态分类和 (2) 认知状态变化检测。要解决的关键问题是从复杂数据中提取特征。因此,进行了频域分析和滑动窗口时间分析。在 73 个变量中,选择了对模型性能贡献最大的五个变量。所提出的模型在检测测试数据中特定飞行员的适当认知状态时,F1 得分达到 0.67。测试数据上的平均 F1 得分为 0.55,高于没有工程特征的基准模型(0.48)。特别是在惊吓和注意力分散分类期间,性能较低。此外,并非所有飞行员

根据生理数据预测飞行员的认知状态...

根据生理数据预测飞行员的认知状态...PDF文件第1页

根据生理数据预测飞行员的认知状态...PDF文件第2页

根据生理数据预测飞行员的认知状态...PDF文件第3页

根据生理数据预测飞行员的认知状态...PDF文件第4页

根据生理数据预测飞行员的认知状态...PDF文件第5页

相关文件推荐