脑肿瘤磁共振图像处理算法可以帮助医生对患者病情进行诊断和治疗,在临床医学中有着重要的应用意义。针对传统U-net网络中多模态脑肿瘤图像分割中类别不平衡以及特征融合导致有效信息特征丢失的问题,本文提出一种基于U-net与DenseNet结合的网络模型。将原网络上编码路径和解码路径的标准卷积块改进为dense块,增强特征的传递;采用二元交叉熵损失函数与Tversky系数组成的混合损失函数取代原来的单一交叉熵损失,抑制了不相关特征对分割精度的影响。与U-Net、U-Net++、PA-Net相比,本文算法的分割精度有明显提升,在WT、TC、ET的Dice系数指标上分别达到0.846、0.861、0.782。 PPV系数指标分别达到了0.849、0.883、0.786;与传统U-net网络相比,所提算法的Dice系数指标分别提高了0.8%、4.0%、1.4%,且在肿瘤核心区域和肿瘤增强区域的PPV系数指标分别提高了3%、1.2%;所提算法在肿瘤核心区域分割性能最优,其Sensitivity指标达到了0.924,具有很好的研究意义和应用价值。
主要关键词