在交互式证明系统中,计算受限的验证者与强大的证明者交互,以验证商定的问题实例的真实性。从 QMA 开始,接着是 QIP 和 QMIP(等等),量子交互式证明系统(其中验证者是量子多项式时间)被定义和研究 [48, 49, 30]。然而,这些量化关键取决于验证者可以访问可信量子多项式时间验证的一个默认假设。鉴于目前量子计算发展的最新水平、表征量子系统的固有困难、以及无法可靠地验证量子计算轨迹的事实,有充分的证据表明这一假设可能是值得怀疑的。事实上,尽管技术取得了令人瞩目的进步,但我们最终可能不得不面对一个现实,即量子计算机永远不会像传统设备那样值得信赖或可靠。这一前景促使人们考虑以下模型:验证者可以访问非常有限但值得信赖的量子功能 [ 1 , 4 , 18 ],或者验证者完全是经典的而证明者受计算限制 [ 31 ],而另一类称为 MIP ∗ 的模型则模拟了一个高效的经典验证者与几个孤立的、不受限制的量子证明者交互 [ 14 ]。每种方法都有优势也有挑战:早期的量子服务器价格昂贵,因此在其他条件相同的情况下,最好只使用一个证明者;另一方面,现有的单证明者协议要么需要可信设备,要么做出计算假设。多证明者协议利用强大的设备独立性技术来避免这些假设,但代价是需要几个强大的证明者并需要隔离。该领域的当前时代精神让我们可以富有想象力地考虑如何描述和模拟量子世界中的任务。这些方法的共同点是,我们不考虑经典协议的直接量子模拟,而是努力做出在量子设置中自然激发的考虑 1 。在这里,我们继续保持这种势头,并引入一种新颖的证明验证方法,其中设置本身只能在量子设置中得到激励。为此,我们考虑以下问题:
主要关键词