Loading...
机构名称:
¥ 1.0

1 伊朗德黑兰国家遗传工程和生物技术研究所工业和环境生物技术研究所生物过程工程系 2 伊朗德黑兰大学科学学院生物技术系 3 法国巴黎巴黎萨克雷大学 4* 美国加利福尼亚州欧文市加利福尼亚大学神经病学系 92612 * 通讯作者:Babak Khorsand Khorsand.babak@uci.edu 美国加利福尼亚州欧文市加利福尼亚大学神经病学系 电话:949.678.8869 利益冲突:无 摘要背景:髓母细胞瘤 (MB) 是儿童中最常见的恶性脑肿瘤,其亚群之间具有显著的分子异质性。准确分类对于个性化治疗策略和预后评估至关重要。程序:本研究利用机器学习 (ML) 技术分析了 70 个儿童髓母细胞瘤样本的 RNA 测序数据。采用五种分类器——K 近邻 (KNN)、决策树 (DT)、支持向量机 (SVM)、随机森林 (RF) 和朴素贝叶斯 (NB)——根据基因表达谱预测分子亚群。特征选择确定了不同大小的基因子集(750、75 和 25 个基因),以优化分类准确性。结果:使用完整基因组进行的初步分析缺乏判别力。然而,减少的特征集显著提高了聚类和分类性能,尤其是对于第 3 组和第 4 组亚群。 RF、KNN 和 SVM 分类器始终优于 DT 和 NB 分类器,在许多情况下,尤其是在第 3 组和第 4 组中,分类准确率超过 90%。结论:本研究强调了 ML 算法在使用基因表达数据对髓母细胞瘤亚组进行分类方面的有效性。特征选择技术的整合大大提高了模型性能,为髓母细胞瘤管理中增强个性化方法铺平了道路。关键词:髓母细胞瘤、基因表达谱、机器学习、癌症病理学、儿科。缩写表

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群PDF文件第1页

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群PDF文件第2页

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群PDF文件第3页

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群PDF文件第4页

通过机器学习驱动的基因表达谱识别髓母细胞瘤的分子亚群PDF文件第5页

相关文件推荐