在整个大脑半球体上神经元钙通量的经颅视频中解散信号是在映射皮质组织特征之前的关键步骤。在这里我们揭示了独立的成分分析可以最佳地恢复神经信号的含量,以捕获的神经元记录,以最小采样率为1.5×10 6像素,每100毫秒框架以17分钟的速度以1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1。我们表明,从组件获得的一组空间和时间指标可用于构建一个随机的森林分类器,该分类器可自动以人为性能分离神经活动和伪影组件。使用此数据,我们建立了小鼠皮层的功能分割,以每个半球体提供〜115个域的图,其中提取的时间课程最大地表示每个记录中的基本信号。域图显示了大量的区域基序,高阶皮质区域呈现出较大的怪异结构域,而较小的圆形域则是原发性感觉区域中的较小圆形区域。数据驱动的视频分解和信号源的机器层化的工作流程可以极大地增强复杂脑动力学的高质量映射。
主要关键词