Loading...
机构名称:
¥ 1.0

由于其复杂性,从 fMRI 数据理解认知状态尚未得到充分研究。在这项工作中,理解 TBI 患者的认知疲劳的问题已被表述为多类分类问题。我们构建了一个时空编码器模型,使用卷积和 LSTM 作为构建块来提取空间特征并模拟 fMRI 扫描的 4D 特性。为了更好地表示数据和条件,我们使用了一种名为“对比学习”的自监督学习技术,使用公共数据集 BOLD5000 对我们的编码器进行预训练,并进一步微调我们的标记数据集以预测认知疲劳。此外,我们提供了一个 fMRI 数据集,其中包含来自创伤性脑损伤 (TBI) 患者和健康对照 (HC) 的扫描,同时执行一系列标准化的 N-back 认知任务。该方法建立了一种最先进的技术来分析 fMRI 数据的认知疲劳,并且优于以前使用不同模式解决此问题的方法。此外,我们的模型能够接收原始 fMRI 扫描(扫描仪直接输出的带有伪影的噪声图像),因此无需实施根据所用扫描仪而变化的手动信号处理管道。最后,我们研究不同大脑区域对 CF 的影响。在此数据集上,所提出的技术比最先进的方法高出 13% 以上。

检测脑外伤患者的认知疲劳......

检测脑外伤患者的认知疲劳......PDF文件第1页

检测脑外伤患者的认知疲劳......PDF文件第2页

检测脑外伤患者的认知疲劳......PDF文件第3页

检测脑外伤患者的认知疲劳......PDF文件第4页

检测脑外伤患者的认知疲劳......PDF文件第5页

相关文件推荐