脑电图(EEG)的驾驶疲劳检测最近由于脑电图技术的非侵入性,低成本和可饮用的性质而引起了人们的关注,但是从嘈杂的EEG EEG信号中提取信息以驱动疲劳检测的嘈杂的EEG信号仍然具有挑战性。径向基函数(RBF)神经网络由于其线性参数网络结构,强大的非线性近似能力和所需的概括属性而吸引了很多注意力。RBF网络性能在很大程度上取决于网络参数,例如隐藏节点的数量,中心向量的数量,宽度和输出权重。但是,直接优化所有网络参数的全局优化方法通常会导致高评估成本和缓慢的收敛性。为了提高基于EEG的驱动疲劳检测模型的准确性和效率,本研究旨在开发两级学习层次结构RBF网络(RBF-TLLH),该网络(RBF-TLLH)允许对关键网络参数进行全局优化。在模拟驾驶环境中,在疲劳和警报状态下,在疲劳和警报状态下收集了实验性脑电图数据。首先利用主成分分析来从EEG信号中提取特征,然后使用拟议的RBF-TLLH用于驾驶状态(疲劳与警报)分类。结果表明,与其他广泛使用的人工神经网络相比,提出的RBF-TLLH方法实现了更好的分类性能(平均准确性:92.71%;接收器工作曲线下的面积:0.9199)。此外,只需要使用拟议的RBF-TLLH分类器中的培训数据集确定三个核心参数,这增加了其可靠性和适用性。发现表明,提出的RBF-TLLH方法可以用作可靠的基于EEG的驱动疲劳检测的有希望的框架。
主要关键词