Loading...
机构名称:
¥ 1.0

核融合设备旨在通过将等离子体加热到非常高的温度,通常是在数十千分kev的范围内实现点火。这些温度下的热量损失是融合效率效率的重要来源。但是,融合横截面仅取决于燃料离子的温度。同时,通过辐射或热传输会导致热电子损失,但不会产生融合功率。此外,磁性配置设备对捕获血浆的容量通常受到总等离子体的限制。因此,高温电子占据了该压力极限的很大份额,而无需产生任何额外的融合能力。因此,可以通过实现“热离子模式”来改善融合装置的性能,在该模式下,在该模式下,离子在高温下比电子高[1,2]。但是,获得热离子模式是一个重要的技术挑战。融合产生的高能离子优先碰撞地损失了它们的能量,而不是燃料离子。如果没有采取任何其他策略来加热离子种群,则电子将至少与燃料离子一样热,即使不是热。如果外部加热源针对离子种群,则可以产生热模式。这些来源可能是中性梁或RF波。在所有这些情况下,热离子模式需要明显的干预才能改变功率平衡,以便将能量引向燃料离子。本文将提出另一种可能性:a在反应器中达到热模式,但是,主要的加热必然是通过融合反应,需要某种形式的α通道,其中融合副产物的能量被引导到波浪中(避免对电子的碰撞加热),并将其引入其燃料中的燃料中的燃料中的燃料[3-111]。在任何这些情况下,如果降低电子能量的能量,则可以增加温度的差异,尽管此策略涉及增加能量损失的范围而言不太可取。

旋转等离子体中的天然热离子模式

旋转等离子体中的天然热离子模式PDF文件第1页

旋转等离子体中的天然热离子模式PDF文件第2页

旋转等离子体中的天然热离子模式PDF文件第3页

旋转等离子体中的天然热离子模式PDF文件第4页

旋转等离子体中的天然热离子模式PDF文件第5页