Loading...
机构名称:
¥ 1.0

量子计算在加速许多问题方面具有巨大的潜力。而不是从古典的牛顿领域“向下”进入更复杂的量子领域,而是使用与所研究现象相同的过程。在地球科学中,量子计算具有许多潜在的应用。例如,量子计算可用于辐射测定的模拟。通过模拟原子的分解,可以更好地了解如何创建这些分解。模拟典型的,不加固的分解将是这一研究领域的第一步。这可以通过为每个原子创建一个量子(量子位)并连接它们来完成,以便如果链中的原子分解较高,则下一个下降的分解。该算法本身可能不会提供量子加速。但是,可以研究将其嵌入模拟晶体中(Xia 2020,Cai等2020),可以研究Radiohalos和裂变轨道。这也可能有助于研究加速的核衰减。洪水热问题也可能是一项有趣的研究。在物体的热性能与量子设备上的噪声之间有相似性。该领域的大多数研究都集中在改善量子计算机上(Sinha等人2022),但可以用来模拟在极端条件下地球系统(Casalegno等人。1999)。 也正在为使用量子计算加快或改善计算流体动力学程序(Gaitan 2020,Steijl 2019,Lin等人。 2009)。 量子计算的基础知识1999)。也正在为使用量子计算加快或改善计算流体动力学程序(Gaitan 2020,Steijl 2019,Lin等人。2009)。 量子计算的基础知识2009)。量子计算的基础知识与本提案中的其他主题不同,这依赖于量子计算机比经典计算机更有效地求解微分方程的能力。它可以允许对沉积物流进行更大或更细粒度的模拟。众所周知,有一些有用的算法可以为类似问题提供加速,或者在我们的量子计算机充分改进时有可能提供加速。需要进一步的研究来确定这些研究领域中的哪个包含在可以通过量子方法更好地解决的问题的子集中。

创建地球科学中的量子计算

创建地球科学中的量子计算PDF文件第1页

创建地球科学中的量子计算PDF文件第2页

创建地球科学中的量子计算PDF文件第3页

相关文件推荐

2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥3.0
2023 年
¥2.0
2023 年
¥1.0
2022 年
¥3.0
2024 年
¥6.0
2023 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0