Loading...
机构名称:
¥ 1.0

状态准备算法可分为精确算法 [2, 3, 4, 5, 6] 和近似算法 [7, 8, 9, 10]。本文主要研究精确状态准备算法。精确状态准备可分为两类:i)准备量子态的算法,将每个模式逐一加载到量子叠加中,计算成本与振幅和量子比特的数量有关 [2, 5, 6];ii)使用量子态分解来准备状态的算法,计算成本与所需状态的量子比特数呈指数关系 [11, 4, 12]。与量子比特数和输入模式数有关且计算成本呈指数关系的算法效率不高,只能用于生成具有少量量子比特的量子态。计算成本为 O(nM)的算法需要大量 CNOT,不适合 NISQ 设备。本文旨在开发一种算法,将稀疏数据传输到量子设备,经典计算机构建量子电路的计算成本为 O(Mlog(M)+ nM),与文献中以前的算法相比,该算法生成的量子电路具有较少的 CNOT 算子数量。为了实现这一目标,我们优化了连续值 QRAM [6],定义了 D 中数据呈现的部分顺序。与最近在 [13] 中提出的稀疏量子态准备算法相比,后者使用经典计算机构建量子电路的计算成本为 O(M2 + nM),我们的方法在双稀疏情况下(关于振幅和状态中 1 的数量的稀疏)生成的电路具有较少的 CNOT 门数量。这项工作的其余部分分为 5 个部分。第 2 节介绍了这项工作中使用的量子算子。第 3 节介绍了 CV-QRAM 算法 [6]。第 4 节介绍了本文提出的 CVO-QRAM 算法。第 5 节介绍了实验结果并展示了所提算法所取得的改进。最后,第 6 节是结论。

双稀疏量子态制备

双稀疏量子态制备PDF文件第1页

双稀疏量子态制备PDF文件第2页

双稀疏量子态制备PDF文件第3页

双稀疏量子态制备PDF文件第4页

双稀疏量子态制备PDF文件第5页