Loading...
机构名称:
¥ 1.0

先进热成像越来越多地被投入到直接能量沉积 (DED) 增材制造 (AM) 中,以应对熔池的信息可见性和解决工艺不一致问题。然而,当前图像引导监测方法在 DED 工艺中的可行性存在关键挑战。首先,高分辨率热图像由数百帧捕获的数百万像素组成,导致分析中的维数灾难。其次,各种外生噪声、结构不良的数据和严重的聚类不平衡限制了当前方法执行实时监控的能力。本研究的目的是通过设计一种针对高维热图像数据的自动和无监督异常检测来推进 DED 工艺中熔池监测的前沿。具体来说,我们开发了一个变分自动编码器来生成每个输入热图像数据的低维表示。高斯混合模型和 K 均值聚类与生成模型相结合,将潜在空间分成同质区域并检测异常。实验结果表明,所提出的方法对缺陷熔池的检测非常有效,准确率高达 94.52%,误报率低于 2.1%。

激光添加剂的自动异常检测

激光添加剂的自动异常检测PDF文件第1页

激光添加剂的自动异常检测PDF文件第2页

激光添加剂的自动异常检测PDF文件第3页

激光添加剂的自动异常检测PDF文件第4页

激光添加剂的自动异常检测PDF文件第5页

相关文件推荐

1998 年
¥8.0