随着全球能源转型不仅转向降低能源生产的碳强度,而且还采用新技术,可再生能源和氢能的潜在组合已成为可能同时满足这两个目标的有力竞争者。能源转型对实现可持续的低碳能源系统至关重要的一个方面是考虑所谓的“利基”技术 [1] 及其突破和成为主流的能力,与成熟技术竞争市场份额 [2](见表 1)。尽管氢能在许多市场中仍可以说是一项“利基”技术 [3],但它已经被公认为未来低碳能源系统的潜在存储和能源生产媒介 [4、5]。据估计,未来五年全球氢能需求每年将增长 4% 至 5% [6]。到 2050 年,根据 2 C 情景,预计氢气的年需求量将增加到 6.5 亿吨,或约 78 EJ,与目前的排放水平相比,每年可减少 60 亿吨二氧化碳 (tCO2),前提是大多数氢气由可再生能源生产[7]。与此同时,目前氢气的生产仍然主要来自化石燃料(即通过蒸汽甲烷重整和煤气化)和通过使用各种电力输入以及碱性水、固体氧化物或质子交换膜电解方法[7]。因此,氢气生产在 2015 年产生了 5 亿吨二氧化碳,在 2019 年产生了 8.3 亿吨二氧化碳[8]。为了满足这一不断增长的需求并减少排放,需要采用碳密集程度较低的氢气生产方法。这项研究提出了一种利用生物质和太阳能生产氢气的新型工艺,这两项技术本身都已经比较成熟,但以一种独特的“利基”组合,作为低碳能源生产的建议。
主要关键词