虽然神经胶质瘤已成为最常见的癌性脑肿瘤,但通过 3D MRI 进行手动诊断非常耗时,且不同的放射治疗师进行的诊断可能不一致,因此迫切需要自动分割脑肿瘤。最先进的方法采用 FCN 来自动分割 MRI 扫描。特别是 3D U-Net 已经取得了显著的表现,并激发了一系列后续研究。然而,它们巨大的规模和繁重的计算阻碍了它们的实际部署。尽管存在大量关于使用低精度表示压缩 CNN 的文献,但它们要么注重减少存储而没有计算改进,要么导致严重的性能下降。在本文中,我们提出了一种 CNN 训练算法,该算法使用非负整数以及训练过的仿射映射函数来近似权重和激活。此外,我们的方法允许以整数算术方式执行点积运算,并将浮点解码和编码阶段推迟到层的末尾。 BraTS 2018 上的实验结果表明,我们训练过的仿射映射方法在 8 位权重和激活的情况下实现了接近全精度的骰子精度。此外,在使用 4 位和 2 位精度时,我们分别实现了与全精度骰子精度相差 0.005 和 0.01 以内的骰子精度。
主要关键词