利用最佳质量传输 (OMT) 技术将不规则的 3D 脑图像转换为立方体(U-net 算法所需的输入格式),这是医学成像研究的全新思路。我们开发了一个立方体体积测量保留 OMT (V-OMT) 模型来实现这种转换。脑图像中流体衰减反转恢复 (FLAIR) 的对比度增强直方图均衡灰度创建了相应的密度函数。然后,我们提出了一种有效的两相残差 U-net 算法与 V-OMT 算法相结合进行训练和验证。首先,我们使用残差 U-net 和 V-OMT 算法精确预测整个肿瘤 (WT) 区域。其次,我们使用扩张来扩展这个预测的 WT 区域,并通过将与脑图像中 WT 区域相关的阶梯状函数与 5×5×5 模糊张量卷积来创建平滑函数。然后,构建一种具有网格细化的新 V-OMT 算法,使残差 U-net 算法能够有效地训练 Net1-Net3 模型。最后,我们提出集成投票后处理来验证脑图像的最终标签。我们从包含 1251 个样本的脑肿瘤分割 (BraTS) 2021 训练数据集中随机选择了 1000 个和 251 个脑样本,分别用于训练和验证。Net1-Net3 计算的 WT、肿瘤核心 (TC) 和增强肿瘤 (ET) 区域的验证 Dice 分数分别为 0.93705、0.90617 和 0.87470。脑肿瘤检测和分割的准确性显著提高。
主要关键词