摘要 —变分量子算法 (VQA) 访问集中式数据来训练模型,使用分布式计算可以显著改善训练开销;然而,数据对隐私敏感。在本文中,我们提出了从分散数据中进行通信高效的 VQA 学习,即所谓的量子联邦学习 (QFL)。受经典联邦学习算法的启发,我们通过聚合本地计算的更新来共享模型参数,从而改善数据隐私。在这里,为了在参数环境中找到近似最优值,我们开发了传统 VQA 的扩展。最后,我们在变分量子张量网络分类器、Ising 模型的近似量子优化和分子氢的变分量子特征求解器中部署了 TensorFlowQuantum 处理器。我们的算法从分散数据中展示了模型的准确性,在近期处理器上具有更高的性能。重要的是,QFL 可能会激发安全量子机器学习领域的新研究。
主要关键词