Loading...
机构名称:
¥ 1.0

正在进行的构建量子计算机的努力基于各种物理实现。最成熟的实现之一是基于保罗阱中的捕获离子,其中量子位被编码在离子价电子的内部状态中,并使用自旋相关力进行纠缠,将离子的内部状态与其集体运动耦合 [1]。捕获离子的优势在于它们表现出超过 10 分钟的相干时间 [2-4] 和灵活的连接 [5,6]。此外,单量子位门的每个门错误率已低至 10 − 6 [7,8],多量子位门的每个门错误率低至 10 − 3 [9-11]。然而,与超导量子位(约 10 纳秒)相比,离子之间的多量子位操作通常相对较慢(约 10 μ s)。此外,冷却、制备、读出和控制数千个捕获离子量子比特所需的光学技术仍处于起步阶段 [ 12 – 14 ]。在这里,我们对基于捕获电子的量子计算进行了可行性研究。电子对量子计算很有吸引力,因为它们非常轻,是一个天然的两级自旋系统(量子比特),具有足够大的磁矩,可以用成熟的微波技术和热库来操纵,从而无需量子比特控制光学器件。相对于捕获离子,质量减少了四个数量级,增加了捕获势中粒子的运动频率,从而提高了多量子比特操作和传输的速度。此外,电子的两级自旋结构消除了传统原子和固态的某些复杂性

利用捕获电子进行量子计算的可行性研究

利用捕获电子进行量子计算的可行性研究PDF文件第1页

利用捕获电子进行量子计算的可行性研究PDF文件第2页

利用捕获电子进行量子计算的可行性研究PDF文件第3页

利用捕获电子进行量子计算的可行性研究PDF文件第4页

利用捕获电子进行量子计算的可行性研究PDF文件第5页

相关文件推荐