Loading...
机构名称:
¥ 4.0

本文研究了网络化多智能体系统中的学习增强分散式在线凸优化,这是一个尚未得到充分探索的具有挑战性的场景。我们首先考虑一种线性学习增强分散式在线算法(LADO-Lin),该算法以线性方式将机器学习(ML)策略与基线专家策略相结合。我们表明,虽然 LADO-Lin 可以利用 ML 预测的潜力来提高平均成本性能,但它不能保证最坏情况的性能。为了解决这个限制,我们提出了一种新颖的在线算法(LADO),该算法自适应地结合 ML 策略和专家策略来保护 ML 预测,从而实现强大的竞争力保证。我们还证明了 LADO 的平均成本界限,揭示了平均性能和最坏情况鲁棒性之间的权衡,并展示了通过明确考虑鲁棒性要求来训练 ML 策略的优势。最后,我们对分散式电池管理进行了实验。我们的结果突出了 ML 增强在提高 LADO 的平均性能以及保证的最坏情况性能方面的潜力。

网络中学习增强的分散在线凸优化

网络中学习增强的分散在线凸优化PDF文件第1页

网络中学习增强的分散在线凸优化PDF文件第2页

网络中学习增强的分散在线凸优化PDF文件第3页

网络中学习增强的分散在线凸优化PDF文件第4页

网络中学习增强的分散在线凸优化PDF文件第5页

相关文件推荐