Loading...
机构名称:
¥ 3.0

时间锁谜题 (TLP) 允许谜题生成器 Gen 高效地为解决方案 s 生成谜题 P ,这样,即使对手使用多台计算机并行运行,将谜题 P 解回 s 也需要更多的时间 。TLP 允许“向未来发送消息”,因为它们只在解算器花费大量时间时才允许“打开信封” P 。Rivest、Shamir 和 Wagner [RSW96] 的工作都提出了时间锁谜题的构造,并介绍了此类原语的应用。它们的构造基于这样一个假设:即使使用并行计算,也无法加快对 RSA 合数模整数的重复平方,除非知道合数的因式分解,在这种情况下他们可以加快该过程。因此,谜题生成器可以通过捷径“解决谜题”来找到解决方案,而其他人则被迫遵循顺序路径。 [ RSW96 ] 的工作还建议将 TLP 用于其他应用,如延迟数字现金支付、密封投标拍卖和密钥托管。Boneh 和 Naor [ BN00 ] 通过定义和构造定时承诺并展示其在公平合约签署等应用中的用途,进一步证明了此类“顺序”原语的实用性。最近,时间锁谜题有了更多的应用,如非交互式非可延展承诺 [ LPS17 ]。尽管它们很有用,但我们仍然不知道如何基于更标准的假设(尤其是基于“对称密钥”原语)构建 TLP。人们可能会尝试使用单向函数的求逆(比如,指数级困难)作为解谜的过程。然而,具有 k 倍并行计算能力的对手可以通过将搜索空间仔细分成 k 个子空间,将搜索过程加快 k 倍。将对称基元视为其极端(理想化)形式,人们可以问随机预言是否可用于构建 TLP。预言模型(尤其是随机预言模型)的优点在于,人们可以根据向其提出的查询总数轻松定义信息论时间概念,还可以根据算法向预言提出的查询轮数定义并行时间概念。这意味着,向预言并行提出 10 个查询只算作一个(并行)时间单位。Mahmoody、Moran 和 Vadhan [MMV11] 的工作通过排除仅依赖随机预言的构造,为从对称基元构建 TLP 提供了强大的障碍。具体而言,已经证明,如果谜题生成器仅向随机预言机提出 n 个查询,并且该谜题可以通过 m 个预言机查询(诚实地)解决,那么总有一种方法可以将解决过程加快到仅 O(n) 轮查询,而总查询次数仍然是 poly(n, m)。请注意,查询总数的多项式极限是使此类攻击有趣所必需的,因为总是有可能在一轮中提出所有(指数级的) oracle 查询,然后无需任何进一步的查询即可解答谜题。 [ MMV11 ] 的攻击实际上是多项式时间攻击,但如果有人愿意放弃该特性并只瞄准多项式数量的查询(这仍然足以排除基于 ROM 的构造)他们也可以在 n 轮中实现它。受量子密码学领域发展的启发,密码系统的部分或所有参与方可能会访问量子计算,我们重新审视了在随机 oracle 模型中构建 TLP 的障碍。Boneh 等人的工作 [ BDF + 11 ] 正式引入了具有量子访问的 ROM 扩展。因此,我们可以研究量子随机预言模型中 TLP 的存在,其中谜题生成器或谜题解决器之一(或两者)都可以访问量子叠加中的随机预言。这引出了我们的主要问题:

论量子随机预言模型中时间锁难题的(不)可能性

论量子随机预言模型中时间锁难题的(不)可能性PDF文件第1页

论量子随机预言模型中时间锁难题的(不)可能性PDF文件第2页

论量子随机预言模型中时间锁难题的(不)可能性PDF文件第3页

论量子随机预言模型中时间锁难题的(不)可能性PDF文件第4页

论量子随机预言模型中时间锁难题的(不)可能性PDF文件第5页