Loading...
机构名称:
¥ 1.0

城市有集体身份吗?生成人工智能(AI)模型的最新进步已使创建从大量数据中学到的现实表示形式。在这项研究中,我们测试了生成AI作为文本和视觉信息的潜在,以捕获通过过滤的描述和图像评估的城市的位置的位置。我们向两个生成AI模型Chatgpt和Dall·e2询问了64个全球城市的地点身份的问题。此外,鉴于伦理上的担忧表达了生成AI的可信度,我们研究了结果是否与真正的城市环境一致。尤其是,我们通过Wikipedia数据和从Google搜索的图像和图像进行了测量,并分别在案例中进行了比较,以确定每个城市生成的输出的独特性。我们的结果表明,生成模型有可能捕获使其可区分的城市的显着特征。这项研究是探索生成AI在模拟特定含义方面的建筑环境中的第一次尝试。它通过使用生成的AI来促进研究机会并讨论未来研究的潜在局限性,从而为城市设计和地理文献做出了贡献。

位置身份:生成AI的观点

位置身份:生成AI的观点PDF文件第1页

位置身份:生成AI的观点PDF文件第2页

位置身份:生成AI的观点PDF文件第3页

位置身份:生成AI的观点PDF文件第4页

位置身份:生成AI的观点PDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2025 年
¥3.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥3.0
1900 年
¥1.0
2024 年
¥10.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0