Loading...
机构名称:
¥ 1.0

随着连接和自动驾驶汽车的增殖,控制器区域网络(CAN)总线由于其速度和效率而成为车载网络的主要通信标准。但是,CAN总线缺乏基本的安全措施,例如身份验证和加密,使其非常容易受到网络攻击的影响。为了确保车辆安全性,入侵检测系统(IDS)必须检测到可见的攻击,并为新的,看不见的攻击提供强大的防御,同时保持轻量级的实用部署。以前的工作仅依赖于CAN ID功能,或者使用了手动功能提取的传统机器学习(ML)方法。这些方法忽略了其他可剥削的功能,这使得适应新的看不见的攻击变体和损害安全性。本文介绍了一种尖端,新颖,轻巧,车载,IDS玻璃,深度学习(DL)算法,以解决这些局限性。所提出的ID采用多阶段方法:在第一个阶段的人工神经网络(ANN)来检测可见的攻击,以及在第二阶段进行长期的短期记忆(LSTM)自动编码器,以检测新的,看不见的攻击。要了解和分析各种驾驶行为,使用最新的攻击模式更新模型,并保留数据隐私,我们提出了一个理论框架,以在层次结构联合学习(H-FL)环境中部署我们的ID。实验结果表明,我们的IDS的F1得分超过了0.99,对于看到的攻击,新型攻击的检测率为99.99%,超过0.95。这使我们的模型可与可见和看不见的攻击进行稳健。此外,误报率(FAR)在0.016%的情况下极低,最小化了错误警报。尽管使用了以其在识别复杂和零日攻击方面的有效性而闻名的DL算法,但IDS仍然轻量级,确保了其对现实世界部署的可行性。

车辆通讯 - 欧洲 - 加迪夫大学

车辆通讯 - 欧洲 - 加迪夫大学PDF文件第1页

车辆通讯 - 欧洲 - 加迪夫大学PDF文件第2页

车辆通讯 - 欧洲 - 加迪夫大学PDF文件第3页

车辆通讯 - 欧洲 - 加迪夫大学PDF文件第4页

车辆通讯 - 欧洲 - 加迪夫大学PDF文件第5页

相关文件推荐