Loading...
机构名称:
¥ 1.0

电磁诱导(EMI)方法通常用于对未爆炸的军械(UXO)进行分类。用于分类的现代时间域系统是多组分,并在多个时间渠道中获取许多发射器收络对。传统上,分类是使用基于物理的反转方法完成的,在该方法中,从EMI数据估算了极化曲线。然后将这些曲线与库中的曲线进行比较,以根据某些误解来寻找匹配。在这项工作中,我们开发了一个直接从EMI数据中分类UXO的卷积神经网络(CNN)。类似于图像分割问题,我们的CNN输出了一个保留输入空间维度的分类图。我们使用使用偶极模型生成的合成数据来训练CNN,以考虑相关的UXO和混乱对象。我们使用两步工作流。首先,我们训练CNN以检测字段数据中的金属对象。从此,我们提取仅包含背景信号的数据贴片,并使用它们来生成一个新的训练数据集,并将此背景噪声添加到我们的合成数据中。第二个CNN经过这些数据训练以执行分类。我们使用Sequim Bay海洋测试地点中使用Ultratema-4系统获取的领域数据测试我们的方法。

用于分类的机器学习方法

用于分类的机器学习方法PDF文件第1页

用于分类的机器学习方法PDF文件第2页

用于分类的机器学习方法PDF文件第3页

用于分类的机器学习方法PDF文件第4页

相关文件推荐