机器人需要了解他们的环境才能执行其任务。如果可以在封闭环境中预先编程的视觉场景分析过程,则在开放环境中运行的机器人将从与环境的互动中学习它的能力。此功能进一步为获得提供的图表开辟了道路,在该图中,机器人的动作能力结构了其视觉场景的理解。我们提出了一种方法,通过依靠互动感知方法和在线分类来建立此类负担图地图,并为配备两个具有7个自由度的武器的真正机器人进行在线分类。我们的系统是模块化的,可以从不同技能中学习地图。在提议的负担形式化中,行动和效果与视觉特征有关,而不是对象,因此我们的方法不需要事先定义对象概念。我们已经在三个动作原语和真实的PR2机器人上测试了该方法。