摘要 - 随着无线网络的增长,可以支持更复杂的应用程序,开放无线电访问网络(O-RAN)架构具有其智能RAN智能控制器(RIC)模块,成为实时网络数据集合,分析,分析以及包括无线电资源块和下降链接电源在内的网络数据收集,分析和动态管理的至关重要的解决方案。利用人工智能(AI)和机器学习(ML),O-Ran解决了具有前所未有的效率和适应性的现代网络的可变需求。尽管在使用基于ML的策略进行网络优化方面取得了进展,但仍然存在挑战,尤其是在不可预测的环境中资源的动态分配中。本文提出了一种新型的元强化学习(Meta-DRL)策略,灵感来自模型 - 现象元学习(MAML),以推动O-RAN中的资源块和下行链路分配。我们的方法利用虚拟分布式单元(DUS)和元DRL策略来利用O-RAR的分类架构,从而实现了适应性和局部决策,从而大大提高了网络效率。通过集成元学习,我们的系统迅速适应了新的网络条件,实时优化了资源分配。这将导致19。与传统方法相比,网络管理性能的增长8%,推动了下一代无线网络的功能。I. I Trattuction通过开放无线访问网络(O-RAN)体系结构,尤其是其RAN Intelligent Controller(RIC)模块[1],[2]大大增强了无线网络以支持多样化和苛刻应用程序的发展。这些模式通过智能资源管理和复杂的控制技术增强网络功能,对于通过实现实时数据收集和分析提供高级服务至关重要[1]。此外,将人工智能(AI)和机器学习(ML)整合到这些模块中,有助于动态资源分配,提高操作效率并适应快速变化的条件。这项创新的核心,RIC模块采用开放式和标准化的接口进行实时和非实时控制,从而使网络更加智能,完全虚拟化和可互操作[3]。ML的策略,尤其是对于自适应网络的形象,在无线网络的动态领域至关重要。RIC使用关键绩效指标(KPI)并执行实时服务分析的能力使NET工作能够适应动态的波动需求。尽管对基于ML的权力和资源分配进行了深入的研究,但在不可预测的条件下管理实时资源管理的复杂性
主要关键词