摘要 - Koopman操作员理论和Willems的典型诱饵都可以为非线性系统提供(近似)数据驱动的线性表示。但是,为Koopman操作员选择提升功能是具有挑战性的,并且来自Willems的基本引理中数据驱动模型的质量无法保证对上的非线性系统。在本文中,我们将Willems的基本引理扩展到接受Koopman线性嵌入的一类非线性系统。我们首先表征非线性系统的轨迹空间与其Koopman线性嵌入的关系之间的关系。然后,我们证明了Koopman线性嵌入的轨迹空间可以通过非线性系统的丰富轨迹的线性组合形成。结合这两个结果会导致非线性系统的数据驱动表示,该系统绕过了对提升函数的需求,从而消除了相关的偏差误差。我们的结果表明,轨迹库的宽度(更多轨迹)和深度(较长的轨迹)对于确保数据驱动模型的准确性很重要。
主要关键词