Loading...
机构名称:
¥ 2.0

摘要这项工作将机器学习整合到大气参数化中,以目标不确定的混合过程,同时保持可解释,预测和建立良好的物理方程。我们采用涡流质量频阵(EDMF)参数化来对各种对流和湍流制度的统一建模。为避免流失和不稳定性,随后与气候模型相结合,我们陷入了离线训练的机器学习参数化,我们将学习作为一个逆问题:数据驱动的模型嵌入了EDMF参数化中,并将其嵌入在一个二维的在线培训中,以一维垂直气候模型(GCM)列。训练是针对太平洋中GCM模拟的大型大规模条件的大型模拟(LE)的输出进行的。我们的框架不是优化亚网格尺度趋势,而是直接针对感兴趣的气候变量,例如熵和液态水路的垂直剖面。具体来说,我们使用集合卡尔曼反转来同时校准edmf参数和管理数据驱动的侧向混合速率的参数。校准的参数化优于现有的EDMF方案,尤其是在当前气候的热带和亚热带位置,并且在模拟AMIP4K实验的海面温度下增加的海面温度下,在模拟浅层积木和层状机制方面保持了高忠诚度。结果展示了物理上约束数据驱动模型的优势,并通过在线学习直接针对相关变量,以构建强大而稳定的机器学习参数化。

混合机器学习参数化中夹带封闭的在线学习

混合机器学习参数化中夹带封闭的在线学习PDF文件第1页

混合机器学习参数化中夹带封闭的在线学习PDF文件第2页

混合机器学习参数化中夹带封闭的在线学习PDF文件第3页

混合机器学习参数化中夹带封闭的在线学习PDF文件第4页

混合机器学习参数化中夹带封闭的在线学习PDF文件第5页

相关文件推荐

2020 年
¥2.0