Loading...
机构名称:
¥ 1.0

5G技术的开发和应用正在满足对移动通信的不断增长的需求[1]。经济和社会越来越多,由于新的,迅速扩展的技术革命,经济和社会变得越来越数字化,网络和聪明[2]。5G网络提供了几个优势,包括高速,极端可靠性和最小的延迟。具有全球可访问性,5G技术满足了广泛的终端网络的大量资源需求。但是,它还引入了网络流量,异质性和复杂性的指数增加,如图(1)所示。管理传统蜂窝网络中的大量异质数据流造成的可观交通负荷,5G操作员在宏基碱站周围部署了许多低功率微型和PICO基线站。此配置有助于卸载流量并维持跨宏基础站的负载余额[3,4]。准确的流量预测对于优化大型城市中5G蜂窝网络资源的部署和分配至关重要,并增强了交通管理系统的智能和可靠性[5]。鉴于5G网络流量本质上是时间序列数据,因此可以将预测挑战作为时间序列预测建模问题进行构架[6]。过去的方法主要使用数学理论,例如统计和概率分布,用于建模和预测流量流。这种方法依赖于有限参数,而不是数据集大小[7]。

混合机器学习方法5G流量...

混合机器学习方法5G流量...PDF文件第1页

混合机器学习方法5G流量...PDF文件第2页

混合机器学习方法5G流量...PDF文件第3页

混合机器学习方法5G流量...PDF文件第4页

混合机器学习方法5G流量...PDF文件第5页

相关文件推荐

2024 年
¥1.0