Loading...
机构名称:
¥ 1.0

基于文档的知识检索系统迅速发展,随着检索功能增强的生成(RAG)和大型语言模型(LLMS)的兴起,在传统的关键字驱动的检索方法中提供了以前无法获得的深度和准确性的水平。抹布架构将大语言模型(LLMS)的生成能力与信息检索的精确度相结合。这种方法有可能重新定义我们如何与生成模型中的结构化和非结构化知识相互作用,以提高响应的透明度,准确性和上下文性[1]。但是,当今的许多基于破布和LLM的应用程序都锁定在高使用成本的背后,这使得对广泛的受众无法接触,尤其是在教育和非商业环境中。

pdfgpt:使用生成AI

pdfgpt:使用生成AIPDF文件第1页

pdfgpt:使用生成AIPDF文件第2页

pdfgpt:使用生成AIPDF文件第3页

pdfgpt:使用生成AIPDF文件第4页

pdfgpt:使用生成AIPDF文件第5页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥7.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2025 年
¥1.0