信息科学与工程,Visvesvaraya Technological University摘要:此项目使用计算机视觉和机器学习来创建虚拟试用室和推荐系统,以改善电子商务时尚体验。cnns用于预测身体形式以获得更精确的建议,并且建议引擎使用基于协作和内容的过滤来根据用户偏好,过去的购买和样式提供时尚项目。为了根据每个用户的口味,样式和车身类型提供服装建议,建议引擎将使用协作过滤和基于内容的过滤算法。同时,一个由计算机视觉驱动的虚拟试用室让客户可以通过将合奏叠加在用户提供的图像或头像上并根据车身测量来修改尺寸,以创建逼真的拟合模拟。通过分析用户提供的图片,我们可以增强身体形式检测,提高拟合精度和建议精度。,由于响应迅速的Web界面,用户将能够上传照片,查看建议并几乎可以实时尝试服装。数据处理将由烧瓶或Django-Built Backend处理,该后端还将毫不费力地与PostgreSQL或MySQL数据库进行交互以存储用户和建议数据。该系统是为了高性能和可扩展性而构建的,并托管在云基础架构上。通过提供个性化的建议并以精确的拟合可视化降低回报,该集成系统旨在提高用户幸福感。本网站允许用户以数字方式尝试服装并进行购买,这最终改善了消费者的幸福感并降低回报率。
主要关键词