是在神经形态计算中应用的有前途的候选者,6 - 8以及宏伟的和自旋装置。9 - 11这些系统的质量和多功能性已经为探索新兴物理学1,3并扩大其潜在应用开辟了途径。但是,由纳米图案过程产生的这些磁性纳米阵列的地形可能会带来重大挑战。一个示例是观察到的与结构相关的强相关光子散射,该散射可能会掩盖阵列中的磁顺序引起的散射。12鉴于这些系统的光子散射特性可能在信息技术应用中发挥关键作用,13或X射线跨曲面中用于操纵光子角和轨道动量的X射线跨面,12探索在开发真正的平面阵列的方法至关重要的是在材料选择和精确的空间控制方面保持灵活性。研究此类处理的另一种动机源于最近的进步,表明磁性超材料作为计算物理底物具有巨大的潜力。8,14将这些材料与CMOS技术或磁随机记忆(MRAM)架构集成的可能性突出了扩展可用制造方法的需求。15
主要关键词