摘要 - 从大脑信号中解码语言信息代表了脑部计算机之间的重要研究领域,尤其是在解密fMRI信号的语义信息的背景下。尽管现有工作使用LLM来实现此目标,但他们的方法并未使用端到端方法,并且避免了fMRI到文本的映射中的LLM,为探索LLM在听觉解码中留下了空间。在本文中,我们引入了一种新颖的方法,即大脑提示GPT(BP-GPT)。通过使用从fMRI提取的大脑表示,我们的方法可以利用GPT-2将fMRI信号解码为刺激文本。此外,我们介绍了文本提示,并将fMRI提示对齐。通过引入文本提示,我们的BP-GPT可以提取更强大的大脑提示,并促进预训练的LLM的解码。我们在开源的听觉语义解码数据集上评估了BP-GPT,与现有方法相比,所有受试者的流星的显着提高了流星的4.61%,而BERTSCORE的BERTSCORE则获得了2.43%。实验结果表明,将大脑表示作为进一步驱动听觉神经解码的LLM的提示是可行有效的。该代码可在https://github.com/1994cxy/bp-gpt上获得。索引术语 - 神经解码,大语言模型,fMRI,脑部计算机界面。